



Date: 16-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

---

**SECTION A – K1 (CO1)**

---

|          |                                                                                                                             |                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|          | <b>Answer ALL the questions</b>                                                                                             | <b>(5 x 1 = 5)</b>                |
| <b>1</b> | <b>Definitions / MCQ / Match the following / True or False</b>                                                              |                                   |
| a)       | Define the surface plasmon resonance effect.                                                                                |                                   |
| b)       | The steps involved in the top-down synthesis approach are                                                                   |                                   |
|          | a) Nano-particles → Powder → Bulk                                                                                           | b) Powder → Bulk → Nano-particles |
|          | c) Bulk → Powder → Nano-particles                                                                                           | d) Nano-particle → Bulk → Powder  |
| c)       | What is a Buckyball?                                                                                                        |                                   |
|          | (a) Carbon-60                                                                                                               | (b) Carbon-111                    |
|          | (c) Carbon-4                                                                                                                | (d) Carbon-20                     |
| d)       | Nanomaterials with the same dimensions but with different structures might have different physical properties. (True/False) |                                   |
| e)       | Which property of nanomaterials is often used in drug delivery systems?                                                     |                                   |
|          | A) Electrical conductivity                                                                                                  | B) Biocompatibility               |
|          | C) Magnetic properties                                                                                                      | D) High density                   |

**SECTION A – K2 (CO1)**

|    |                                                                                                                                                                                     |                    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|    | <b>Answer ALL the questions</b>                                                                                                                                                     | <b>(5 x 1 = 5)</b> |
| 2  | <b>MCQ</b>                                                                                                                                                                          |                    |
| a) | Which of the following nanomaterials exhibits quantum confinement in a single direction?<br>a) one-dimensional    b) two-dimensional    c) three-dimensional    d) zero dimensional |                    |
| b) | _____ can be viewed as a stack of graphene layers.<br>a) Diamond    b) SWCNT    c) MWCNT    d) Graphite                                                                             |                    |
| c) | Typical precursors used in sol-gel are _____.<br>a) metal oxides    b) metal dioxides    c) metal alkoxides    d) metal fluorides                                                   |                    |
| d) | XPS is not routinely used to analyze.<br>a) inorganic compounds    b) metals    c) ceramics    d) organic chemicals                                                                 |                    |
| e) | What advantages do nanosensors offer?<br>a) high sensitivity    b) detecting chemical vapours    c) high selectivity    d) all of the above                                         |                    |

## SECTION B – K3 (CO2)

| <b>Answer any THREE of the following</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(3 x 10 = 30)</b> |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 3                                        | Enumerate any 5 applications of nanomaterials.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| 4                                        | Explain the electrical, optical, chemical, and thermal properties of nanostructured materials.                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| 5                                        | Discuss the inter-and intramolecular interactions existing in various crystal compounds.                                                                                                                                                                                                                                                                                                                                                                                               | (5+5)                |
| 6                                        | a) Explain the classification of core-shell nanoparticle semiconductors with suitable examples.<br>b) How are nanomaterials synthesized using solvothermal methods?                                                                                                                                                                                                                                                                                                                    | (5+5)                |
| 7                                        | a) Nitrogen ( $N_2$ ) was employed to determine the surface area of a 1.0 g sample of silica gel. The slope and intercept obtained are $137486 \text{ m}^{-3}$ and $943.5 \text{ m}^{-3}$ . The sample was maintained at the normal boiling point of liquid $N_2$ at 77 K. Area of cross section of $N_2$ molecule is $16.2 \times 10^{-20} \text{ m}^2$ . Calculate the specific surface area of silica gel by the BET method.<br>b) Explain the working principle of nanobiosensors. | (5+5)                |

### SECTION C – K4 (CO3)

| <b>Answer any TWO of the following</b> |                                                                                                                                                                                                                                      | <b>(2 x 12.5 = 25)</b> |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 8                                      | Write notes on different dimensions of nanomaterials.                                                                                                                                                                                |                        |
| 9                                      | With neat diagrams, explain the essential components, principle, and operation of SEM.                                                                                                                                               |                        |
| 10                                     | a) How do bonding force and energy vary against inter-atomic separation in a given material?<br>b) Illustrate the classification of semiconductor nanocomposites with suitable examples. (6.5+6)                                     |                        |
| 11                                     | a) How are metal oxide nanostructures synthesized using the sol-gel method? Write the advantages and drawbacks of this method.<br>b) How is the specific surface area of solid adsorbents determined using the BET equation? (6.5+6) |                        |

### SECTION D – K5 (CO4)

| <b>Answer any ONE of the following</b> |                                                                                                                                                                  | <b>(1 x 15 = 15)</b> |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 12                                     | Explain the different types of magnetic nanomaterials.                                                                                                           |                      |
| 13                                     | a) Describe the electronic and optical properties of graphene.<br>b) Illustrate the role of carbon nanotubes as field emitters in field emission displays. (8+7) |                      |

### SECTION E – K6 (CO5)

| <b>Answer any ONE of the following</b> |                                                                                                                                                                               | <b>(1 x 20 = 20)</b> |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 14                                     | Draw the diagram of a Molecular Beam Epitaxy (MBE) thin film deposition apparatus, and explain its operation.                                                                 |                      |
| 15                                     | a) Explain the nonbonding intermolecular forces with suitable equations.<br>b) How is energy dispersive spectroscopy performed for elemental analysis of nanomaterials? 10+10 |                      |

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$